\qquad

1. Describe the Type I and Type II errors for a hypothesis test of the following claim: A computer repair company advertises that the mean cost of removing a computer virus is less than $\$ 100$. Remember to state the null and alternative hypotheses first.

Find the critical value(s) and rejection region(s) for the type of t-test with the level of significance and sample size given.
2. left-tailed, $\alpha=0.10, n=20$
3. right-tailed, $\alpha=0.05, n=36$
4. two-tailed, $\alpha=0.01, n=42$
5. Use the calculator to get a P -value given that the population mean is 32.5 , the sample mean is 32 , the sample standard deviation is 2.35 , and the sample size is 45 . Assume a left-tailed test. If the level of significance is $\alpha=0.05$, would you reject or fail to reject H_{0} ?

Complete a full hypothesis test for the proportion or mean using either a z-test or t-test based on the problem. Include the hypotheses, type of test (left-tailed, right-tailed or two-tailed, sketch, either the Pvalue or critical value(s) and rejection region(s), the standardized test statistic (either z or t), decision to reject or fail to reject H_{0}, and interpret the decision in the context of the original claim. Assume the population is normally distributed.
6. The average credit card debt of college students is $\$ 3262$. A college feels that students have much less credit card debt (so their claim is that college students have less than $\$ 3262$ of credit card debt). In a random study of 50 college students, the mean credit card debt was $\$ 2995$ and the standard deviation was $\$ 1100$. At the level, $\alpha=0.05$, determine whether to reject or fail to reject the college's claim.
7. A study claims that 68% of the population owns a home. In a random sample of 150 households, 92 owned a home. At the $\alpha=0.01$ level, is there enough evidence to support the claim?
8. The medical association claims there are at most 27% female physicians. In a survey of physicians, 45 of the 120 were women. Is there sufficient evidence to support the medical association at the $\alpha=0.01$ level of significance?
9. The average amount of taxes paid by a family of four is greater than $\$ 4172$. A random sample of 20 families found that an average of $\$ 4560$ was paid in taxes with a standard deviation of $\$ 1590$. At $\alpha=0.10$, is there evidence to support that families pay more than $\$ 4172$?

